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Received 7 May 1980, in final form 25 September 1980 

Abstract. We present a technique for calculation of configurational properties of dilute 
polymer solutions. By using second-order perturbation theory in the small parameter 
E = 4 - d + 0, we are able to determine a specific value of the excluded volume parameter U 
equivalent to the fixed point value given by renormalisation group theory. For this value of 
the excluded volume parameter each expansion series in E can be summed to an exponential 
function. We thus study the total number of configurations, C, the number of configurations 
returning to the origin, U, and the mean square end-to-end distance, ( R 2 ) ,  of the polymer 
coil. An interdimensional relationship previously developed is used to extrapolate the 
present results to lower dimensions. Finally, we compare our results with those of previous 
theories and lattice enumerations, discussing possible differences between the Gaussian 
excluded volume model used here and the self-avoiding walk model, close to dimensionality 
d = l .  

1. Introduction 

In dilute polymer solutions the various polymer chains are on the average far apart from 
each other, and thus the interactions between them can be neglected. Consequently, 
the study of dilute polymer solutions reduces to that of isolated polymer coils. But 
although intermolecular interactions are negligible in this limit, intramolecular ones 
must be considered. Under specific conditions of temperature, solvent and molecular 
weight, called f9 conditions, long-range interactions are cancelled by solvent effects. In 
this case, the only remaining interactions are those of adjacent monomer units. The 
problem can then be described by a Markoff process and is equivalent to a random walk 
on a lattice. If N is the number of the segments of the chain, proportional to the 
molecular weight of the polymer, the mean end-to-end square distance of the coil 
behaves as 

(R’) - N. 

Under conditions other than the f9 conditions, the interactions between non-adjacent 
segments are switched on and the behaviour of the polymer can no longer be 
represented by a Markoff process. In the good solvent case these interactions are 
repdsive and the chain expands. The mean square end-to-end distance then becomes 

( R ~ )  - N ~ ”  (v > 2 good solvent). 

t Present address: Chemistry Department, University of Ioannina, Ioannina, Greece. 
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932 M K Kosmas 

For a linear polymer starting at the origin 0 and ending at R, the distribution 
function of R in the Gaussian model with excluded volume is given by the expression 
(Fixman 1955, Kosmas and Freed 1978b, Yamakawa 1971) 

P[R,  NI = ( G) 
3 d N / 2  I fi ddrisd(r1)Sd(rN - R )  

i = l  

Here d is the dimensionality of the system, 1 is an effective segment length, the vector r, 
points to the ith segment or link, N is the number of segments proportional to the 
molecular weight, and B is proportional to the inverse of temperature. V(r ,  - r,) is the 
non-bonded interaction between the segments i and j and, as is customary (Fixman 
1955, Yamakawa 1971), is taken to be V(r ,  - r , )  = (2u/B)sd(r ,  - r , )  where U is the 
binary cluster integral. The first term in the Boltzmann factor represents a connectivity 
term which guarantees that the segments form a chain and do not behave like the 
molecules of a fluid. The second excluded volume term relates to a two-body potential 
arising when segments remote along the chain approach in space. It carries all the 
physics and the difficulty of the problem. The approximation of V(r ,  - r,)  with the delta 
function pseudopotential has also been used in the continuous model (des Cloizeaux 
1980, Edwards 1965b, Freed 1972), according to which the polymer chain is approxi- 
mated by a continuous line. The present model is equivalent to the continuous model. 
As a matter of fact, the perturbation expansions of § 2 are the same as those coming 
from the continuous model (Edwards 1975) in the limit of large N. The differences of 
the two models are different values of normalisation constants and the necessary 
introduction of proper cut-offs in the continuous model. 

Flory (1949) used mean field arguments to approximate the solution of the problem. 
He considers the free energy of the system to consist of two terms, an elasticity term and 
an interaction energy term, He expresses the free energy as a function of the expansion 
factor of the coil and obtains this expansion factor by minimising the free energy. He 
gives for the mean end-to-end square distance of the coil the form 

( R 2 ) - N 2 u ,  v = 3/(2 + d ) ,  (1.4) 

where d stands for the dimensionality of the system. For a critique of Flory’s method 
see des Cloizeaux (1970). Edwards (1965b) replaces the two-body potential between 
the segments with random fields (Freed 1972, Kosmas and Freed 1978a) and he finds 
the most dominant field in a self-consistent way. His results, although of mean field 
accuracy, give some corrections to Flory’s formula, equation (1.4), and criteria of where 
they are valid. A different approach is used by Domb (1969) who attacks the excluded 
volume problem with enumerations of self-avoiding walks on lattices. He  gives results 
for the mean end-to-end square distance of the walk, the number of total walks 
(Edwards 1965a) and the number of walks returning to the origin. De  Gennes (1972) 
notices the equivalence of the self-avoiding walk to the n-component Ising model in the 
limit n += 0. Using the results of the renormalisation group theory of Wilson and Kogut 
(1974), he applies the Ginsburg-Landau-Wilson model describing second-order phase 
transitions to the polymer study. 

Recently (Kosmas and Freed 1978b) we have shown how the solutions of the 
problem at different dimensionalities are related, and we have demonstrated with 
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scaling arguments the criticality of dimensionality four in agreement with previous 
findings (Wilson and Kogut 1974, de Gennes 1972). For dimensions above four the 
excluded volume effects are negligible and the chain behaves like an ideal one. We gave 
formulae relating the solutions at different dimensionalities and, using the results for 
the one-dimensional rigid rod as a boundary solution, we have recovered Flory’s 
formula, equation (1.4). 

In this work, following Wilson and Kogut’s (1974) E expansion used in connection 
with renormalisation group theory, we solve the problem in a perturbation scheme (des 
Cloizeaux 1980) close to four dimensions. We only need the solution for E = 4 - d +. 0, 
since with the relations connecting the various properties at different dimensionalities 
(Kosmas and Freed 1978b) given here, we can jump from 4 - ~  to 3 - ~  etc. With 
second-order perturbation theory in E we are able to determine a specific value of the 
interaction parameter U ,  equivalent to the fixed point value of the renormalisation 
group theory, for which the various series can be summed to exponential functions. This 
requirement is in accord with renormalisation group theory which postulates that the 
step by step elimination of the several degrees of freedom of a system, close to a critical 
point, preserves the form of the free energy (here an exponential function in U*) 
(Wilson and Kogut 1974). 

In 3 2 we define the characteristic quantities of the polymer chain such as the 
number of total configurations, C, the number of configurations returning to the origin, 
U, and the mean end-to-end square distance, ( R 2 ) ,  in terms of the distribution function 
of equation (1,3). We then calculate these quantities close to four dimensions. Section 
3 demonstrates how we derive the results for d = 3, 2, 1, using as a boundary solution 
the one developed for d = 4 - E  ( E  + 0) .  In the last section we discuss our results and 
compare the present treatment with previous theories. The Appendix illustrates the 
evaluation of various diagrams. 

2. Evaluation of the quantities close to four dimensions 

In what follows we take for simplicity the effective length l = 1 and assume that all the 
other parameters bear proper units. Employing the delta function pseudopotential in 
equation (1.3) and expanding the distribution function in powers of U, we have the form 

The first term in the expansion represents the distribution function of an ideal chain, the 
U term is the result for a chain with one ‘knot’ arising from the delta function constraint 
and the u 2  term is the result with two knots arising from the two delta functions of this 
term. 

Denoting the ideal chain by a horizontal line and the knots by dots, equation (2.1) 
can be written in a diagrammatic language as 

(2.2) 
p - u x 2 2 - - - e - p + - x 8 u P .  U L  

2 P[R, NI = - 
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The subscript refers to the property in question, for example, P stands for the 
distribution function and the numbers 2 and 8 are the symmetry numbers of the 
corresponding diagrams. The explanation of the symbols in equation (2.2) is as follows: 

-- = ( 3 / 2 ~ N ) ~ / '  exp(-zR2/N); (2 .3)  
eP gives rise to only one kind of diagram, 

N-l N 

+p=- 
i = l  j = i + l  

(2 .4)  

-o-o--~ gives rise to three different kinds of diagrams, 

with the expressions -p="+8++p 

( 2 . 5 ~ )  

3 d / 2  3 N-3  N-2  N-1 N 

?xTp= i = l  e j = i + l  e k = j + l  I - k + l  ( 2 ~ ( j - i ) ) ~ ~ ~ ( 2 1 1 ( 1 - k ) )  

3 
(211(N - j + i  - I +  k )  

AT-3 N - 2  N-1 

(2.5b) 
3 

r ( k  -1) 2 7 ( N  - 1 + i) 
1,ff (&) d / 2  d / 2  d / 2  

d d / 2  N - 3  N - 2  N-l N 

i = l  j = i + l  k = j + l  I = k + l  11 11 12 13 
- 3 P  = 

). ( 2 . 5 ~ )  
3 R 2  

x (2~(N-1 i -12 -13+1e8)  2 (N-I i - /2- /3+lef i )  

In equation (2.5) lI = j - i, 12 = k - j ,  13 = 1 - k ,  1:; = 11-'+ 1;' + 1;' and i, j ,  k ,  1 measure 
contour lengths along the polymer chain (Fixman 1955). Throughout the rest of this 
work 11, 12, 13, leR, i, j ,  k ,  1 will have the same meaning as in equation (2.5).  

The distribution function P(R, N )  as expressed in equation (2.2), with the meaning 
of the various diagrams given by equations (2.3)-(2.5), will be used to study the various 
coil properties. 

2.1. Number of total configurations 

The number of total configurations is defined as 

C = p f J ddR P[R,  NI, (2.6) 

where p o  represents the activity for an ideal chain. For the present theory this is the 
normalisation factor of equation (1.3),  /*o = ( 3 / 2 ~ ) ~ ,  while for walks on a lattice this is 
the lattice coordination number. Lattice enumerations for self-avoiding walks have 
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found that C depends on N in the limit of large N, in the form 

C = k N N a d ,  (2.7) 

where ,U is an effective coordination number depending on the lattice used and ad is a 
critical index independenf of the lattice, depending only on the dimensionality of the 
system. It was found to be close to for d = 3 and close to f for d = 2. 

In order to evaluate the number of total configurations, we begin with the definition 
(2.6) where the distribution function P(R, N )  is expressed by the expansion of equation 
(2.2). Thus equation ( 2 . 6 )  becomes 

C = , U ~ /  d d R ( - p - u x 2 + - p + - x 8 ~ p ) .  2 (2.8) 
U 2  

Using the expressions (2.3),  (2.4), and (2.5) in equation (2.8) for the several P diagrams 
and absorbing factors of ( 3 / 2 ~ ) ~ / ’  in U, we find for C 

U 2  
C=,U6[- c - u x 2  7 - c  + p  8( m c  +8” +-e-c)], 

(2.9) 
with 

c = 1,  (2.10a) 

1 1 N-3 N-2  N-1 

i = l  ] = i + l  k = i + l  I=k+l  (I - i - k + j ) d /2  (k - j )d/2’  

(2.10b) 

(2.10c) 

(2.10d) 

(2.10e) 

and leff, 11, 12, 13, i, j ,  k ,  1 defined in equation (2.5). The diagrams (2.10) have been 
calculated for d = 4 - E  in the limit of E + O  and N + m  and collected in table 1. 
Examples of these calculations are given in the Appendix. Using the values of these 

Table 1. Values of the various diagrams. 

C U ( R 2 )  

-0 N -In N + i e ( N  -4 Inz N )  N-’[N + 2 In N N In N -  N+:sN In2 N 
+ f e ( 3  InZ N + N  In N ) ]  

i N 2 - 2 N l n N + l n 2 N  N-’(fN’-In N )  2N InZ N-N21n  N + $ N 2  

N In N- lnZ  N - N  N-’(3 Inz N f 2N In N )  3N In N - N In2 N - f N 2  
00 

3N-2 In2 N -;N Inz N 
8 
---@-- -$Inz N 
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diagrams in the expression (2.9), we obtain for the number of total configurations 

c = pr{1-  u [ 2 ~  - 2 In N + E ( N  - 5  In2 N ) ]  + + u ~ ~ [ ( $ N ~  - 2~ In N +In2 N )  

+ ( N  In N - ln2 N - N )  + (-9 ln2 NI]},  (2.11) 

which after ordering powers of U and E in the limit of large N leads to 

C = p?[1- u(2N-2  In N )  + U E ( ~  ln2 N ) +  u2(2N2-4N In N -6  ln2 N ) ] .  (2.12) 

We now search for a specific value U = U *  that converts the series (2.12) to an 
exponential function. We thus obtain the characteristic relation 

$u**(2N-2 In N)' = u * E ( ~  ln2 N ) +  u**(2N2-4N ln N - 6  ln2 N ) ,  (2.13) 

which as a quadratic equation has two solutions, U* = 0 corresponding to the trivial 
ideal solution and U *  = ~ / 1 6  corresponding to a non-ideal solution describing the 
expanded coil. These two values are identical to the values given by renormalisation 
group theory, as expected, since renormalisation group theory is exact in the limit E + 0. 
For U = U* the series given by equation (2.12), although it has two different functional 
forms N and In N, sums to an exponential function of the form 

(2.14) 

which is identical to the form that lattice enumerations yield. So we see that equation 
(2.14) represents a solution of the problem close to four dimensions and for a specific 
value of U = U * .  

The new thing to emerge from the complete expression equation (2.14) is the 
effective activity p. According to renormalisation group theory, this result is valid for a 
larger area of points in the proximity of the fixed point. Therefore, equation (2.14) is 
expected to be valid independently of U as long as we do not fall in the neighbourhood of 
the other, trivial fixed point, U* = 0, where the expanded chain becomes a Gaussian 
ideal coil. In 0 3 equation (2.14) is used in the limit E + 0 to obtain useful results for the 
real dimensionalities d = 3, 2, 1. 

p = pee-€/' < 1 0 ,  c = p~ N e - ~ N / 8 ~ ~ / 8  = p"~/8, 

2.2. Configurations returning to origin 

The second quantity that we study in this work is the number of configurations returning 
to the origin, given by 

U = pFP[O, NI. (2.15) 

Lattice enumerations of self-avoiding walks yield for U in the limit of large N the form 

U = p N N b d ,  (2.16) 

where bd is a critical exponent depending only on the dimensionality and found to be 
close to -a for d = 3 and close to -9  for d = 2. The parameter p is the same as in the 
definition of C. 

The same treatment is followed for the evaluation of U as previously for the 
evaluation of the number of total configurations. Using equation (2.2) for the prob- 
ability distribution in equation (2.15), we obtain 

(2.17) 
U 2  

p-ux2-e---p+-x8 2 
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Again using the expressions (2.3), (2.4) and (2.5) for the P diagrams, we obtain for the 
number of configurations returning to the origin the expression 

with 

U = 1/Nd12, ( 2 . 1 9 ~ )  

(2.19b) 

1 1 
( 2 . 1 9 ~ )  

1 N-3 N-2  N-1  N 

j=l  j = i + 1  k = j + l  [ = k + l  ( j - i )d’2 ( / - k ) d / 2  ( N - j + i - 1 + k ) d / 2 ’  

1 1 1 N-3  N - 2  N-1  

(2.19d) 
i = i  j = i + i  k = j + i  / = k + i  (1  - i - k + j ) d / 2  ( k  - j ) d / 2  (N-14- i)d/2’ 

(2.19e) 

where the symbols have the same meaning as before. Using the values of the diagrams 
(2.19) from table 1 in equation (2.18), we find for U 

U = p f { N - ( 4 - E ) / 2  - U (1 /  N 2 ) [ 2 N  + 4 In N + E (3111’ N + N In N ) ]  

+ $ ~ ‘ ( 8 / N ~ ) [ ( $ N ~ - l n  N ) + ( 3  ln2 N + 2 N  In N ) + ( 3  In2 N ) ] } ,  (2.20) 

which upon ordering powers of U and E in the limit N -+ 00 leads to 

U = ( p f / N 2 )  ( 1  + [ $ E  In N - u ( 2 N  + 4 In N ) ]  + [ & E ’  ln2 N - U E ( ~  ln2 N + N In N )  

+4u2($N2+61n2 N + 2 N  In N)]} .  (2.21) 

Again looking for the values of U which make the series (2.21) sum to an exponential 
function, we recover the same values U* = 0, ~ / 1 6  found in the study of the number of 
total configurations C. This demonstrates that the results of renormalisation group 
theory about the existence of a unique fixed point apply correctly to the study of 
polymers. Using the non-trivial value U *  = ~ / 1 6  in equation (2.21), we obtain the 
number of configurations returning to the origin as 

(2.22) 

Equation (2.22) has the same form that lattice enumerations yield, with p being the 
same as in the expression (2.14) for the number of total configurations. Equation (2.22) 
will also be used in the next section as a boundary solution in the limit E + 0 in order to 
derive results for the real dimensionalities d = 3,  2, 1.  

2.3. Mean end-to-end square distance 

We now proceed to study the property most studied previously, the mean end-to-end 
square distance of the coil, ( R 2 ) ,  defined as the second moment of the distribution 
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function equation (1.3)’ 

( R 2 )  = J ddR R2P[R, NI/  J ddR P[R, NI. 

It physically represents the dimensions of the polymer coil. In t..e limit o 
behaves as 

( R 2 ) - N Z Y d ,  

(2.23) 

large N, ( R  ’) 

(2.24) 

where V d  is a third critical exponent believed to be close to 5 for d = 3 and close to 2 for 
d = 2 .  The evaluation proceeds in exactly the same way. Equation (2.2) for the 
probability distribution is substituted into equation (2.23) to yield 

p - ~  ~ 2 - - - + - - ~ + - ~ 8 8 - - e e ~ ) ]  U 2  

2 
( R 2 )  = [I ddR R2( - 

-1 

(2.25) x[ J ddR( - - - -p -u  ~2---0--p~t-x8--te~)] U 2  . 
2 

Using again the expressions (2.3)’ (2.4) and (2.5) for the P diagrams, we obtain 

with 

(2.273) 

( I  - i) N-3  N-2 N - l  

j - 1  c c c  j = j + l  k = j + l  ~ = k + l  f (  (1  - i - k + j ) d / 2 ( k  - j ) d / 2  

11 + 12 + 13 - l,ff N-3  N - 2  N - l  

+ ( R 2 )  = - 1 f ( d / 2  d / 2  d / 2  ) *  
i = l  j = i + l  k = j + l  l = k + l  11 12 13 

( 2 . 2 7 ~ )  

(2 .27d)  

(2.27e) 

The diagrams (2.27) are also calculated and listed in table 1. Using their values in 
equation (2.26), we take for the mean end-to-end square distance 

( R 2 )  = N + u ( 2 N  In N - 2 N + ; & N  ln2 N ) + : u 2 { 8 ( N - l n  N ) ( N  In N - N )  

+8[(2N ln2 N - N 2  In N + $ N 2 )  

+(3N In N -N  ln2 N --$ N2)-?N ln2 NI}, (2.28) 

which upon ordering powers of U and E gives in the limit N -+ CO the expression 

( R 2 )  = N[1+ 2u In N + ( S U E  - 6 u 2 )  ln2 NI. (2.29) 
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Values of U that convert the series to an exponential function are the ones found before, 
namely U* = 0, ~ 1 1 6 .  For U* = -e116 relation (2.29) becomes 

, (2.30) (R2)  = Nl+./S 

giving the value for the critical exponent 

u4-. = i(l+ ~ / 8 )  as F + O .  (2.31) 

The above result is identical to the renormalisation group result in the limit E + 0. 

3. Interdimensional relationships 

In this section we give the expressions which relate the various properties at different 
dimensionalities. They will help us to obtain useful results for the real dimensionalities 
d = 3 , 2 , 1  using as a known boundary solution the one found in the previous section for 

The main quantity in this treatment is the mean end-to-end square distance, ( R 2 ) ,  
equivalent to the inverse of the square of the correlation length in critical phenomena. It 
physically represents the square of the physical length of the coil. In a previous article 
(Kosmas and Freed 1978b) we considered the polymer chain between two hyperplanes 
(Daoud and de Gennes 1977) and we were able to correlate the solution at two different 
dimensionalities d and d - 1. For the exponents ud and Vd-1 the relation 

d = 4 - &  ( ~ + 0 ) .  

was found. Writing this relation in a more suitable form, we notice that 

c v ,  
- -- 2-  11.d - 2- 1/vd-l  - 2-  1 / Y d - 2  _ .  . . =  

4 - d  4 -  (d  - 1) - 4 - ( d  - 2) (3.1) 

where C, is a constant of the problem independent of the dimensionality. The invariant 
C, may be evaluated by means of the solution close to four dimensions previously 
developed in § 2, and consequently U d  can be determined as a function of the 
dimensionality of the system. Employing equation (2.31), C, is calculated as 

2 -1 /~4- ,  - - 2 - 2 ( 1 + ~ / 8 ) - ’  - - 2 - 2 ( 1 - ~ / 8 )  - _  - 1 
4’ 

C” = 
-04 - (4 - E )  E 8 

(3.2) 

Combining equations (3.1) and (3.2), we determine the critical exponent Ud as 

Ud = 4 / ( 4  + d) .  (3.3) 

The above treatment demonstrates that the solution of the problem close to the critical 
dimensionality d = 4, in connection with the interdimensional relation (3,1), leads to an 
expression for the critical exponent Ud slightly different from that given by Flory’s 
formula, equation (1.4). Thus for d = 3 and 2 equation (3.3) yields 2u3 = 1.143 and 
2u2 = 1.333 respectively, in fair agreement with the corresponding results obtained 
from equation (1.4), 2v3 = 1.2 and 2u2 = 1.5. But the difference becomes pronounced 
at dimension d = 1, where the present result gives 2u1 = 1.60 compared with 2u l=  2 of 
the previous theory. Possible explanations for this discrepancy are discussed in the next 
section. 
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We now proceed to find how the expressions that give a certain property of the 
polymer chain at different dimensionalities correlate with each other. Let us consider a 
general property E with an ideal exponent e: ( U  = 0), and write a general expression for 
E in the form (Kosmas and Freed 1978b) 

E =Ne2fE(UN(4-d) /2  1. (3.4) 

E = Ne2f~(~N(4-d)/2,D/N1/2). (3.5) 

If we confine the polymer between two hyperplanes a distance D apart, we take 

The effect of the parameter u N ' ~ - ~ ' / ~  is to combine with the rest of the parameters of 
the problem to give the non-ideal results. Defining a non-ideal exponent f?d for the 
dimensionality d, we find from equation (3.5) that 

Accepting a power law dependence of f l  on its argument for D + 0, we recover the d - 1 
problem so that 

)-"D " E = Nedu2(ed-4)/(4-d)  NU^^ ( 2 v d - 1 ) / ( 4 - d )  

, (3.7) - - C ~ e d - l U 2 ( e d - , - e 2 - l ) / [ 4 - ( d - l ) l  

where c is a constant independent of U and N. 

(3.7), we take two relations including the unknown w. Eliminating w, we obtain 
Equating the exponents of the variables N and U in the two members of equation 

(3.8) 

But (2 - l / V d ) / ( 4  - d )  is a constant of the problem, and thus after using equation (3.2) 
we find another constant of the problem independent of the dimensionality, namely 

(3.9) 

The Ce is to be determined for each property from the solution close to dimensionality 
four. 

As a first example we study the number of total configurations C for which a: = 0. 
Equation (3.9) then becomes 

(3.10) ad 
- ( a d ) - - =  ca. 
4-d  4 

2 

The solution close to four dimensions gives (see equation (2.14)) u4-E = &/8, which 
substituted in equation (3.10) gives C, = This information is enough to determine ad 
as a function of dimensionality: 

U d  (4-d)/(4 i- d ) .  (3.11) 

This equation gives the following results for the various dimensionalities: a3 = 0,143, 
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a2 = 0.333, a l  = 0.600. They are slightly different at d = 3 from what lattice enumera- 
tions studies (Domb 1969) have found (a3 = 0.167, a2 = 0.333). 

For the walks returning to the origin bz = -d/2 and so equation (3.9) becomes 

(3.12) 

From the solution close to four dimensions (see equation (2.22)) we have b4-E = 
-2 + ~ / 4  which, used in (3.12), gives Cb = 0. This determines bd as a function of 
dimensionality: 

(3.13) 

The corresponding indices at d = 3,2, 1 are b3 = -1.714, b2 = -1.333 and bl  = -0.800 
respectively, again slightly different from results yielded by lattice enumerations studies 
(b ,  = -1.750, b2 = -1.500). Possible explanations of these differences between the 
present Gaussian model with excluded volume and the self-avoiding walk model are 
discussed in the next section. 

bd = -4d/(4 + d). 

4. Discussion 

We have given a solution to the configurational problem of dilute polymer solutions 
close to four dimensions. We have determined a specific value of the interaction 
parameter U completely equivalent to the fixed point value in renormalisation group 
theory. For the fixed point value of the interaction parameter, the various series that 
describe the properties of the system can be summed to exponential functions. The 
solution for d = 4 - E is important, since it bears all the characteristics of the problem at 
real dimensionalities; additional information is obtained by using it as a boundary 
solution in interdimensional relationships to derive results for d = 3, 2 and 1. 

The results of the present work are very close to those of renormalisation group 
theory of the Ginzburg-Landau-Wilson model. The agreement becomes exact in the 
limit of small E where the E expansion of renormalisation group theory tends to a 
correct limit. As we have already mentioned, the present method also confirms the 
uniqueness of the fixed point regardless of the property that we study, as has been well 
demonstrated from the independent calculations of C, U, and (R2) .  The main advan- 
tage of the method is its simplicity. We arrive at results analogous to those of the 
renormalisation group using a simple perturbation scheme, and this fact enables the 
adoption of the present technique to more complicated problems. 

The interdimensional relationship given by equation (3.1) is a general law describing 
the non-ideal behaviour of a polymer chain under the present Gaussian model with 
excluded volume. To give useful results it must be combined with a solution at a specific 
dimensionality. This is because we need to determine the invariant of the problem, C, 
of equation (3.1), in order to express vd as a function of the dimensionality. Kosmas and 
Freed (1978b) have used the one-dimensional rigid rod v1 = 1 in equation (3.1) as a 
known solution, and have recovered in this way the mean field results given by equation 
(1.4). Their result, together with the result of the present model, v l  = 0.8 obtained by 
using the correct boundary solution v4-E = i ( l +  ~ / 8 )  in equation (3.1), indicate some 
possible differences between the Gaussian excluded volume model and the self- 
avoiding walk model for low dimensionalities. The former model allows crossings of 
the polymer chain whereas the self-avoiding walk model forbids such configurations. 
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Of course, for higher dimensionalities the difference is negligible, since both models for 
d approaching four converge to ideal ones. As we have seen, the present results are 
good compared with lattice enumerations studies of self-avoiding walks for d = 2 and 3. 
The question then posed is whether the lack of identity between the two models is the 
cause of the more pronounced difference in the exponents for d = 1. 

For d = 1 the conformation in the self-avoiding walk model is that of a rigid rod, 
clearly yielding (R2)  = NZv1 ,  v l  = 1. The situation is different in the Gaussian model 
with excluded volume. This model for d = 1 deals with the distribution of N segments 
X I ,  X 2 ,  . . . , X N  lying on a line. The segments interact with an energy expressed by the 
Boltzmann factor of equation (1.3). Such an interaction does not prevent permutations 
of the segments along the line in which the two segments X 1  and XN,  the two physical 
ends of the chain, are not the two ends of the permutation. Physically, such permu- 
tations represent configurations of the polymer in which folding occurs. The mean 
end-to-end square distance of folded configurations is less than N 2 ,  which is the 
corresponding value for the full extended chain. The problem under these conditions is 
a one-dimensional long-range problem, and bears all the characteristics of the two- and 
three-dimensional analogues, in contrast with the self-avoiding walk problem which at 
d = 1 allows only the rigid rod configuration. By taking into account the folded 
configurations, the Gaussian model with excluded volume necessarily yields mean 
end-to-end distance less than that of the rigid rod, ( R 2 )  - N 2 ,  but at the same time 
larger than the ideal coil answer, ( R 2 )  - N. It is clear that the correct answer must lie 
somewhere between these two limits, having the form (R2)-N2”l with vl between 2 
and 1, presumably close to our result 0.8. Analogous differences can be detected for 
higher dimensionalities, though the non-ideality of the chain reduces as the dimen- 
sionality of the space increases. 

Concluding, we mention that beyond the insight we have gained from the solution of 
the polymer conformational problem at d = 4 - E ,  which exhibits all the important 
features of the solution at real dimensionalities, we have confirmed the uniqueness of 
the fixed point for the several properties of the polymer coil. We have found the 
exponents vd, ad and bd as functions of the dimensionality and we have determined the 
activity p of a real chain. Finally we have questioned possible differences between the 
present Gaussian model with excluded volume and the self-avoiding walk model close 
to dimensionality d = 1. 
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Appendix 

Here we give examples of evaluation of diagrams. We will evaluate - 
m ( R * ) .  For d = 4 - E ,  

and 
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which upon making the substitution i - j  = k for small E gives 

At  this stage we convert the summation into an integration to obtain 

The integrals of A3 are trivial, and give in the limit N + CO the final form 

(244) T C = N - l n N + ~ ~ ( N - i - l n  1 1 2  N), 

which is listed in table 1. 

order E' so d /2  = 2 .  
The second-order diagrams are lengthier. We need second-order diagrams only in 

N - 3  N - 2  N-1 
l +  

" R z )  = - ( j - - i ) ( l - -k) '  ( j- i) ' ( l-k) 
Upon making the substitution j - i = kl, 1 - k = k2 we convert (A5) into 

2 k z = l  k l = l  

Converting the summations into integrations, and taking into account the fact.that the 
two sums of (A6) give the same result, we obtain 

(A7) 

The integrations of (A7) are straightforward and in the limit of N + CO give the result 

1 
dk l (N  - kl -  k ~ ) ~  - 

kik l '  

N - 2 - k 2  

/1N-3 dk2 Jl - ' O ( R 2 )  = - 

" ~ 2 )  = 2N ln2 N - N 2  lr. N +:N2 ,  

also listed in table 1. 
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